TCP三次握手与四次挥手

TCP概述

TCP 把连接作为最基本的对象,每一条 TCP 连接都有两个端点,这种断点我们叫作套接字(socket),它的定义为端口号拼接到 IP 地址即构成了套接字,例如,若 IP 地址为 192.3.4.16 而端口号为 80,那么得到的套接字为 192.3.4.16:80。

TCP三次握手

最开始的时候客户端和服务器都是处于 CLOSED 状态。主动打开连接的为客户端,被动打开连接的是服务器。整个过程如下图所示:

19_TCP三次握手.png

  1. TCP 服务器进程先创建传输控制块 TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了 LISTEN(监听)状态;
  2. TCP 客户进程也是先创建传输控制块 TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位 SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP 客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP 规定,SYN 报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。
  3. TCP 服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是 ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP 服务器进程进入了 SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。
  4. TCP 客户进程收到确认后,还要向服务器给出确认。确认报文的 ACK=1,ack=y+1,自己的序列号 seq=x+1,此时,TCP 连接建立,客户端进入 ESTABLISHED(已建立连接)状态。TCP 规定,ACK 报文段可以携带数据,但是如果不携带数据则不消耗序号。
  5. 当服务器收到客户端的确认后也进入 ESTABLISHED 状态,此后双方就可以开始通信了。

为什么TCP客户端最后还要发送一次确认呢

一句话,主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。

如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于 TCP 的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。

如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。

TCP连接的释放(四次挥手)

数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于 ESTABLISHED 状态,然后客户端主动关闭,服务器被动关闭。TCP 四次挥手过程如下图所示:

20_TCP三次握手与四次挥手.png

  1. 客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为 seq=u(等于前面已经传送过来的数据的最后一个字节的序号加 1),此时,客户端进入 FIN-WAIT-1(终止等待 1)状态。 TCP 规定,FIN 报文段即使不携带数据,也要消耗一个序号。
  2. 服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号 seq=v,此时,服务端就进入了 CLOSE-WAIT(关闭等待)状态。TCP 服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个 CLOSE-WAIT 状态持续的时间。
  3. 客户端收到服务器的确认请求后,此时,客户端就进入 FIN-WAIT-2(终止等待 2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
  4. 服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为 seq=w,此时,服务器就进入了 LAST-ACK(最后确认)状态,等待客户端的确认。
  5. 客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是 seq=u+1,此时,客户端就进入了 TIME-WAIT(时间等待)状态。注意此时 TCP 连接还没有释放,必须经过 2*MSL(最长报文段寿命)的时间后,当客户端撤销相应的 TCB 后,才进入 CLOSED 状态。
  6. 服务器只要收到了客户端发出的确认,立即进入 CLOSED 状态。同样,撤销 TCB 后,就结束了这次的 TCP 连接。可以看到,服务器结束 TCP 连接的时间要比客户端早一些。

为什么客户端最后还要等待2MSL

MSL(Maximum Segment Lifetime),TCP 允许不同的实现可以设置不同的 MSL 值。

第一,保证客户端发送的最后一个 ACK 报文能够到达服务器,因为这个 ACK 报文可能丢失,站在服务器的角度看来,我已经发送了 FIN+ACK 报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个 2MSL 时间段内收到这个重传的报文,接着给出回应报文,并且会重启 2MSL 计时器。

第二,防止类似与 “三次握手” 中提到了的 “已经失效的连接请求报文段” 出现在本连接中。客户端发送完最后一个确认报文后,在这个 2MSL 时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

为什么三次握手四次挥手

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在 LISTEN 状态下,收到建立连接请求的 SYN 报文后,把 ACK 和 SYN 放在一个报文里发送给客户端。

而关闭连接时,服务器收到对方的 FIN 报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送 FIN 报文给对方来表示同意现在关闭连接,因此,己方 ACK 和 FIN 一般都会分开发送,从而导致多了一次。

客户端故障

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP 还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为 2 小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔 75 秒发送一次。若一连发送 10 个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。